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An initial localized eddy was generated in a rotating tank by a source-sink method 
to study the behaviour of an isolated barotropic eddy on a P-plane. The evolution of 
the eddy was compared with the laboratory experiments by Firing & Beardsley 
(1976) and by Takematsu & Kita (1985, 1988), confirming the northwestward 
(southwestward) translation of a cyclonic (anticyclonic) isolated eddy due to  
nonlinear effects. Anticyclonic eddies were contrasted with cyclonic eddies in the 
tank experiment, showing a cyclonic-anticyclonic asymmetry due to the topographic 
p as a substitute for the planetary /3. The fluid experiment was simulated well by 
numerical simulation based on the quasi-geostrophic vorticity equation. Numerical 
experiments verified the northwestward (southwestward) translation both for an 
initially Gaussian and initially Rankine-type isolated cyclonic (anticyclonic) eddy. 

1. Introduction 
Mesoscale eddies in the ocean have been studied extensively since their discovery 

about twenty years ago (see Robinson 1983, for a general survey). Nevertheless, 
many of their behaviours and roles in the ocean circulation still remain unclear. One 
of the most fundamental problems has been the autonomous behaviour of a 
barotropic isolated eddy on a /3-plane. Many studies have been dedicated to this 
subject: linear and nonlinear analytical models (Adem 1956; Stern 1975; Flierl 1977, 
1987 ; Nof 1981 ; Carnevale, Vallis & Purini 1988), numerical simulations (McWilliams 
& Flierl 1979; Mied & Lindemann 1979; Holloway, Riser & Ramsden 1986), 
laboratory experiments (Firing & Beardsley 1976), and observtions using moorings, 
ship surveys and satellite images (see Richardson 1983). 

Observational research has reported the seemingly whimsical translation of 
isolated eddies; they appear to move in any direction (Mizuno & White 1983, for 
example). Accordingly they are considered to be affected by complicating effects of 
nearby eddies and currents, geographical and topographic features, and so on. On the 
other hand, numerical and experimental studies can deal with an isolated eddy 
independently of such natural complications. They seem to have established a 
theory that anticyclonic and cyclonic isolated eddies translate in the southwest 
and northwest directions, respectively, owing to the nonlinearity combined with the 
p-effec t . 

Recently, however, it was argued theoretically that isolated eddies do not 
necessarily follow the accepted theory mentioned above (Nof 1986). Also, a 
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laboratory experiment by Takematsu & Kita (1985, 1988) reported cyclonic isolated 
eddies moving southwestward, where the eddies were generated and maintained by 
local cooling due to a piece of ice floating on the water surface. On this experimental 
basis, they hypothesized that initially Rankine-type eddies might behave differently 
from initially Gaussian eddies, to which most of the previous studies have been 
confined; the former eddies have net vorticity whereas the latter do not. The density 
stratification used in the experiment of Takematsu & Kita (1985, 1988), however, 
raises a question as to whether the eddy observed in their experiment is an analogue 
of an isolated barotropic eddy on a ,&plane. Since few laboratory experiments have 
been performed on this problem, a conclusive laboratory and numerical experiment 
is needed to clarify this fundamental problem. 

Our primary purpose is therefore to examine the northwestward (southwestward) 
translation of a cyclonic (anticyclonic) isolated eddy by a fluid experiment, which is 
free of either the restriction of no net vorticity (cf. Firing & Beardsley 1976) or 
density stratification which complicates the dynamics (cf. Takematsu & Kita 1985, 
1988). In  this study, an isolated barotropic eddy is produced by a source-sink 
method satisfying the conditions mentioned above. The second purpose is to test 
whether the evolution of an eddy in the tank is simulated by a numerical 
computation based on the quasi-geostrophic vortioity equation. We believe that, in 
general, the same results obtained from different approaches can afford a reliable 
solution to a disputable problem. Further, by numerical means, i t  is possible to 
compare directly the evolution of an initially Gaussian eddy and an initially 
Rankine-type eddy. The third purpose lies in contrasting anticyclonic with cyclonic 
eddies, because previous laboratory experiments have provided flow visualization 
only of cyclonic ones. 

2. Experimental procedures 
Parameters are described both in c.g.s. and in non-dimensional units, for the 

convenience of the description of the tank experiment and the consideration of 
dynamic balances. Non-dimensional (dimensional) values are often added in 
parentheses. We non-dimensionalize the variables so that (i) the length of the tank 
or the basin = 10, (ii) the characteristic p = 1 and (iii) the characteristic depth of the 
tank = 1. Then, the horizontal scale (radius) of the initial eddy is about 1 in non- 
dimensional units in the following experiments. 

2.1. Laborutory experiment 
Figures 1 (a )  and 1 ( b )  show schematics of the apparatus of the tank experiment in top 
and side views, respectively. The system is mounted on a turntable. The main tank 
made of glass is 50.8 cm x 50.8 cm (10 x 10) wide and 30 cm (1.54) deep. Topographic 
/3 is introduced by a uniform bottom slope of 1/3. Accordingly, the shallow area 
corresponds to the northern region in geography. The water in the main tank is 11 cm 
(0.57) deep in the shallowest portion measured when the turntable is a t  rest. The tank 
has a glass lid to reduce surface or friction effects. 

The centrifugal force due to the rotation of the tank causes the free surface to 
assume a parabolic shape. The depth h(z ,  y )  is expressed as 

where (xr ,  y,) = (24.0 cm, 24.1 cm) is the rotation axis of the basin, hr is the depth 
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FIGURE 1. Schematic diagram of the tank experiment in (a)  top view and (6) side view. The system 
rotates a t  an angular velocity of 19.0 r.p.m. The bottom with slope 1/3 makes the topographic p. 
An initial localized eddy is generated by a source-sink method ; the piston installed at the reservoir 
tank forces water into or out of the main tank through the net in the hole on the bottom. 

there when the system is rotating, f, the Coriolis parameter and g the acceleration 
due to gravity. The second term represents the bottom slope. The difference in level 
between the centre and the marginal area amounts to about 1.3 cm (0.065) because 
of a rather fast rate of rotation (19.0r.p.m.). The Coriolis parameter f ,  becomes 
3.98 s-l (11.5). The characteristic depth around the tank centre (close to the centre 
of rotation) is estimated to  be h, = 19.5 cm ( l ) ,  from which the topographic p is 
j’,(dh/dy)/h, = 0.0681 s-l cm-l (1). Thus, the unit horizontal scale, the unit vertical 
scale and the unit time are 5.08 cm, 19.5 cm and 2.89 s, respectively. 

.The sloped bottom has a circular hole of radius rh = 5.0 cm (0.98) with the centre 
a t  (35.4 cm, 25.4 cm). This hole is covered by a plankton net of fine mesh, through 
which water can flow, though with much resistance. The screen of the net works like 
a solid wall except when large forces are exerted so as to force water across it. A pipe 
connects the hole with a reservoir tank of radius rp = 6.25 cm. It is equipped with a 
piston with which to force water into or out of the main tank through the screen of 
the hole. This process generates an initial isolated eddy in the tank. 

The vertical motion of the piston is given by 

where zp is the vertical position of the piston, A ,  the amplitude of the displacement 
of the piston, Tp the period of the sinusoidal motion of the piston, t the time from the 
start of the piston movement; A,  is positive (negative) for cyclonic (anticyclonic) 
cases. We set iT, = 5 s (1.73) and varied the amplitude lApl from 1.5 ern to 3.5 cm. 

When the amplitude of the piston displacement lApl = 2.5 cm, the water column 
near the hole of the main tank shrinks or stretches by 7.81 cm (0.401). This 
corresponds to  relative vorticity of 1.60 s-l (4.61), which is small compared with the 
Coriolis parameter f, = 3.98 s-l (11.5) (but of the order of half off,). It is large 
compared with 0.346 s-l (l), the topographic p multiplied by the characteristic scale. 
In  this sense, we may say that the flow is ‘quasi-geostrophic’ and the eddy is 
nonlinear. 
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The decay time due to the bottom Ekman friction is estimated as h , / ( ~ u f , ) ~  = 
138 s (47.8), where the molecular viscosity v = 0.01 cm2 s-' (1.12 x lop3). The time 
constant based on the horizontal viscosity becomes 2580 s (893) for the motion of the 
unit scale (5.08 cm). Consequently the horizontal viscous effect is small except near 
the side boundary. Also, the bottom drag can be neglected when we consider the 
motion within 30 s (10.4) from the onset of the eddy motion. 

The flow is visualized by aluminium powder where the light is shed horizontally a t  
the depth of the interior layer. A camera attached to a rotating frame takes 
photographs from above. We consider that the photograph obtained is representative 
of the flow a t  the middle of the exposure time of the film. 

2.2.  Numerical experiment 
There are a few difficulties in applying the quasi-geostrophic vorticity equation to 
the present fluid experiment. First, the aspect ratio of the phenomenon of concern is 
of order 1 ; the horizontal scale is even smaller than the vertical scale, if we choose 
the former at the radius of the initial eddy (5  cm) and the latter at the characteristic 
depth (19.5 cm). Accordingly the shallow-water assumption does not hold in the 
present tank experiment. This fact partly reduces the two-dimensionality of motion 
and partly makes ambiguous the meaning of the (external) radius of deformation. 
That radius is 34.7 cm (6.83) when it is estimated from (gh,)t/f,, which is valid for 
shallow water. But the deformation radius becomes 15.8 cm (3.10) when we estimate 
it from the group velocity of gravity waves with the possible largest wavelength 
2/2 x 50.8 cm. The effective deformation radius will be smaller for motions of smaller 
scales. Since the geostrophic adjustment is not well understood €or the case of deep 
water so far as the authors know, we simply assume the latter value of 15.8 cm for 
the deformation radius; an infinite and other values of deformation radius were 
tested, but qualitatively similar results were confirmed. 

The second difficulty is concerned with the expected large relative vorticity (about 
half off,, see the preceding section) and the third with the large bottom slope of 1/3. 
These are unfavourable for the quasi-geostrophic approximation. If more precise 
simulation is intended for the present laboratory experiments, we should rely on the 
primitive equations which can describe the adjustment process by external inertio- 
gravity waves with aspect ratio of order 1. Here, however, we restrict ourselves to the 
quasi-geostrophic regime with suitable modifications, partly for computational 
economy and partly to simplify the dynamics. It is expected that qualitative features 
of the tank experiment will be reproduced by the quasi-geostrophic equation as well, 
since the fundamental dynamics is due to  eddies rather than gravity waves. 

In  a preliminary report (Masuda, Marubayashi & Ishibashi 1987b), we solved an 
initial-value problem for the non-dimensional quasi-geostrophic vorticity equation 
on a P-plane with an initially Gaussian eddy. Here we introduce the topographic /3 
explicitly by the depth distribution of ( l ) ,  in order to represent better the 
topographic p of the tank experiments. We remark that the results are qualitatively 
the same as in the preliminary study on a plane of uniform /3, except for the 
north-south asymmetry described in the next section. 

The basic equation we use for the numerical experiments is 

where ~ is the ' quasi-geostrophic ' stream function, t the time, ( x ,  y) the (eastward, 
northward) coordinates, y2 = 0.103 (4.01 x iO-3 cm-2) the square inverse of the 
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deformation radius, V2 the Laplacian operator, J the Jacobian operator and 
the vorticity input, defined later (Pedlosky 1987). The third term expresses the 
topographic p, where h(z,  y) is given by (1).  The constant factor h, might be preferred 
to h(z, y) in this term or in the bottom stress term for consistency of the geostrophic 
approximation. However, we adopted the present form since it gave a (slightly) 
better agreement with the laboratory experiment and since it partly takes into 
consideration the large bottom slope, which cannot be described precisely by the 
geostrophic approximation, as mentioned before. A finite-difference method is used 
for time integration. The computational area is 10 x 10 square, the grid intervals are 
Ax = Ay = 0.2 (1.16 cm), and the time step At = 3.46 x lop2 (0.1 s). We include small 
viscous terms, but presumably they hardly affect the overall behaviour of the eddy. 
For computational simplicity we adopt the slip condition at the side boundary, since 
the non-slip condition requires much finer grids for the resolution of the viscous 
boundary layer. 

Three kinds of numerical experiments are presented here: (i) the initial-value 
problem of a Gaussian eddy, (ii) the initial-value problem of a Rankine-type eddy 
and (iii) the response problem to the vorticity input. The initially Gaussian eddy is 

where (zh, yh) = (35.4 cm, 25.4 cm) denotes the location of the centre of the hole, rc 
the characteristic radius, and P the amplitude of the initial Gaussian stream 
function. We evaluate the amplitude P so that the maximum vorticity is twice the 
expected vorticity input averaged over the hole; P = Apfc(rp rc/rh)'/hc. 

For the Rankine-type eddy, the initial stream function is the solution of the 

where ra = (z - zh)* + (y - yh)* and Q denotes the amplitude of the potential vorticity ; 
Q is evaluated as 2A,(rp/rh)2 (f , /hc).  

In the response problem, we consider the vorticity input to be given by the vertical 
velocity at the bottom of the hole, which is approximated here as 

w(x, y, -t) = 0 < r < rh and 0 < t < tT, (6) 

\ 0 

The vorticity input then becomes 

otherwise. 

In the above rough arguments, the (possibly) maximum amplitudes are estimated. 
We do not know precisely, however, which inflow or outflow rate through the net is 
actually used for the generation of the isolated eddy. Also we do not know which 
functional form of forcing in the hole is adequate or which characteristic radii are 
appropriate in substituting the initial-value problem for the response problem. We 
therefore consider, irrespective of the intensity or the sign of the eddy, (i) an 
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‘efficiency ’ coefficient c, = 0.7, (ii) a parabolic form of forcing (see (5) and (6)) and (iii) 
rc = 1 . 2 ~ ~ ;  these assumptions provided reasonable flows in agreement with the tank 
experiment. We tested a larger c, of about 1,  a uniform forcing or a smaller rc,  but 
obtained similar flows. It is worthwhile to note (i) that a larger c,  and uniform forcing 
give a similar flow to a smaller c, and a parabolic distribution of forcing, and (ii) that 
the cyclonic (anticyclonic) case is simulated better by a larger (smaller) c, and a 
parabolic (uniform) form of forcing on the hole. These may be ascribed to the 
source-sink method used for the generation of the eddy. 

3. Results 
There are various experimental constraints which reduce the validity of the quasi- 

geostrophic approximation, as mentioned before. We should therefore ignore 
detailed discrepancies and be satisfied with qualitative agreement of the flow pattern 
between the laboratory and numerical experiments. We contrast an anticyclonic 
with a cyclonic eddy, since no visualization is available for the former and it shows 
an evolution different from that of the cyclonic eddy in a basin with topographic p. 

Figures 2 and 3 are presented to  show the almost linear eddy field a t  t = 13.5 s and 
21.5 s, respectively. The photographs were obtained for a cyclonic eddy of small (but 
finite) amplitude A ,  = 1.5 cm with a long exposure time, T, = 3 s, required to 
visualize the slow motion of this case. Numerical linear response was calculated for 
the anticyclonic input. Considering the time needed for geostrophic adjustment, we 
shifted the time of numerical simulation by an amount of 1.5 s. Solid and dashed lines 
respectively represent positive and negative contours of $. The contour interval is 
always taken at 0.1 times the maximum absolute value of the stream function at the 
corresponding moment ; it is arbitrary for the linear case. The flow has a north-south 
asymmetry even for the linear computation. I n  particular, the secondary eddy to the 
northeast of the main eddy propagates faster than that to the southeast. This feature 
is due to the larger topographic ,8 (=f,(dh/dy)/h) in the northern (shallow) area of 
the basin. In  the fluid experiment, the cyclonic eddy moves slightly in the 
northwestward direction, indicating a finite-amplitude effect. We see that the linear 
simulation is in good agreement with the observed evolution of the eddy of small 
amplitude in the tank. 

Figures 4-7(a) show the typical nonlinear evolution of a cyclonic eddy in a 
rotating tank visualized by aluminium powder at four instances for a single 
experimental run ; T, = 1 s. The amplitude of the piston (A,  = 3.5 cm) is the largest 
in the present laboratory expcriment. Figures 4-7 (c) show the same as figures 4-7 ( a )  
but for an anticyclonic eddy (AP = -3.5 cm). Numerical simulations are shown in 
figures 4-7 ( b )  and ( d ) ,  corresponding to ( a )  and ( c ) ,  respectively. Taking into account 
the problems associated with the quasi-geostrophic approximation and the difficult 
control of the generation of the initial eddy by the source-sink method, we may say 
that the experimental and numerical experiments have nearly the same conditions. 

The eddy is generated at t = 4.5 s (figure 4). The flow still preserves the 
north-south symmetry. Noticeable motion is observed in most of the basin, but the 
numerical results give a wider spread of motion presumably due to the quasi- 
geostrophic formulation ; probably we should take a smaller deformation radius or 
consider the more precise adjustment process. In  the fluid experiment, the 
anticyclonic case has an irregular motion near the eddy centre, since the inflow up 
through the screen induces turbulence ; this probably accounts for why a smaller c, 
and the uniform forcing on the hole would be preferred for the anticyclonic case. 
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FIUURE 2. Almost linear response of the eddy field at t = 13.5 s from the start of the piston of the 
reservoir tank in (a) the laboratory and (b) the numerical experiment. In the laboratory experiment 
the amplitude of the piston A, = 1.5 cm (cyclonic), while the stream function was computed by a 
numerical simulation of the response kind (see text). The time for (b) is delayed by 1.5 s asthe time 
necessary for the geostrophic adjustment. The contour interval is arbitrary for this linear case. 
Solid and dashed lines represent positive and negative contours, respectively. 

FIGURE 3. The same as figure 2 but for t = 21.5 s .  

Later, a t  t = 12.5 s in figures 5(a)  and S(b) ,  the cyclonic main eddy moves 
northwestward and secondary anticyclonic eddies appear to the northeast and to the 
southeast of the main cyclonic eddy. The main eddy takes a more circular form than 
in the linear case in figure 2. Strong nonlinearity enhances the secondary eddy in the 
southeastern area more than in the northeastern. We do not observe many 
alternating eddies elongated meridionally to the east of the main eddy BS anticipated 
from previous theoretical and numerical studies of an isolated eddy in a wide basin. 
We must note that the present experiment deals with an eddy of larger scale than 
that in the previous experiments. Accordingly the side boundary has stronger effects 
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FIGURE 4. Eddy field at t = 4.5 s for strongly nonlinear case of /A,[ = 3.5 cm : (a )  cyclonic eddy in 
the tank experiment, ( b )  cyclonic eddy in the numerical simulation, (c) anticyclonic eddy in the 
tank and (d) anticyclonic eddy in the numerical simulation. The contour interval is 1.36 ems s-l for 
( b )  and 1.35cm2 s-l for (d) .  

on the eddy motion and thereby Rossby normal modes of basin-wide scale will be 
important. 

Near the western boundary, long Rossby waves are reflected as short Rossby 
waves, causing a secondary cyclonic eddy. In the numerical experiment, it moves 
southward like the boundary Batchelor-modon eddy (Yasuda, Okuda & Mizuno 
1986; Masuda, Marubayashi & Ishibashi 1987a; Masuda 1988), whereas such a 
translation is only just observed in the fluid experiment. This is mainly because the 
quasi-geostrophic formulation transfers more energy westward than the real motion 
(compare the fluid experiment with the numerical experiment a t  t = 4.5 9). Another 
reason is the slip boundary condition of the numerical simulation ; the non-slip 
condition adequate for the fluid experiment would resist this translation of the eddy. 
The anticyclonic eddy of figures 5 ( c )  and 5 ( d )  shows similar behaviour, if we 
interchange ‘north ’ and ‘south ’. A notable quantitative difference between the tank 
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FIGURE 5. The same as figure 2 but for t = 12.5 s :  contour interval is 1.07 om2 s-l for ( b )  
and 0.991 cm2 s-l for (d).  

experiment and the numerical experiment is the faster westward translation of the 
main eddy in the former. 

Figure 6 shows the flow a little later at  t = 16.5 s. The elongated eddy near the 
western boundary seems to disappear in the fluid experiment, but it reaches the 
southwest or the northwest corner in the numerical experiment. The main cyclonic 
(anticyclonic) eddy barely translates farther northwest (southwest) in this period (see 
figure 10). At this time, the main eddy is passed by the secondary eddies which were 
located to the east but now to the west of the main eddy, since these secondary eddies 
propagate rapidly owing to their large scale. To the east of the secondary eddies, 
tertiary eddies of opposite signs are generated, propagating westward. The flow at 
t = 26.5 s is shown in figure 7. Eddies of different scales appear in the eastern basin. 
The main eddy enlarges its area and approaches the western boundary at an 
accelerated pace. The secondary eddies which have preceded the main eddy are 
reflected by the western boundary and they will disappear. We observe clear 
north-south (cyclonic-anticyclonic) asymmetry in this figure. 



650 A .  Masudn, K .  Marubayashi and M .  Ishibashi 

FIGURE 6. The same as figure 2 but for t = 16.5 s :  contour interval is 0.813 cm2 s-l for ( 6 )  
and 0.895 em2 s-I for (d) .  

Next, let us examine the evolution of the initial isolated eddy. Figures 8 and 9 
show the simulated eddy field a t  t = 9 and 13 s, respectively, for ( a )  a Rankine-type 
cyclonic and ( 6 )  a Gaussian cyclonic case, where the initial distribution is described 
in 52.2. The amplitude is the same as in figures 4-7. If we delay by 3.5 s, the time 
necessary for the initial generation and the geostrophic adjustment, figures 8 and 9 
correspond to figures 3 and 4. The flow of initially Rankine-type eddies is almost the 
same as the simulation of the response type; in particular, the secondary eddy 
formed near the western boundary translates like the boundary Batchelor-modon 
type eddy. For the Gaussian distribution, intense motion is concentrated near the 
main eddy and the scale of the eddy is relatively small. Consequently the secondary 
eddies propagate westward more slowly for the Gaussian eddy. Anticyclonic cases 
were simulated as well for the same kind of initial eddies, showing their 
southwestward translation. 

Finally, figure 10 plots the trajectories of the eddy centre for A ,  = f2 .5  and 
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FIGURE 7 .  The same as figure 2 but for t = 26.5 s : contour interval is 1.17 em2 s-l for ( b )  
and 1.01 eme s-l for (d).  

k3.5 em, where the tracing was made from the photographs of the flow taken a t  
every 2 s. The hole a t  the bottom is drawn as a circle in the figure. We observe that 
the cyclonic eddy moves westward faster than the anticyclonic eddy, but the 
northward translation of the former eddy is small compared with the southward 
translation of the latter eddy. The larger the nonlinearity or IAJ, the larger is the 
northward (southward) translation. During the time from about 12 s to about 20 s, 
a significant motion of the eddy centre is found. The eddy seems stagnant in 
westward translation; it moves to the north (south) and returns back a little to the 
south (north) for the cyclonic (anticyclonic) case. Then it begins to translate or 
propagate westward with a large speed. 

The observed trajectories of the eddy centre may be interpreted as follows for the 
cyclonic case (see the sequences of figures 4-7a and c ) .  As the secondary eddies grow 
to the east of the main eddy, they accelerate the northward translation of the main 
eddy. By virtue of the stronger topographic /I mentioned in the linear case, the 
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FIGURE 8. Simulated eddy field corresponding to t = 12.5 s for the initially cyclonic (a) Rankine- 
type and ( b )  Gaussian isolated eddy: contour interval is (a) 1.07 om* s-l and ( b )  0.685 om2 s-l. The 
time is delayed by 3.5 s. 

(al 

FIQURE 9. The same as figure 8 but for t = 16.5 s :  contour interval is (a) 0.840 cm2 s-' 
and (b) 0.930 om2 s-*. 

northern area increases the westward propagation, but decelerates the northward 
translation since nonlinearity is measured relative to the /?-effect. Of course, large 
amplitude increases the northward translation of the main eddy due to nonlinearity. 
Since the secondary eddies propagate faster than the main eddy by virtue of their 
large scale, they soon run parallel to the main eddy. In this period, they induce a flow 
that pushes the main eddy back eastward (this is not inherent to the nonlinear case 
only, but also occurs for the linear response computed numerically). They eventually 
outrun the main eddy, causing a southward backing motion of the main cyclonic 
eddy. After they propagate far westward, the main eddy enlarges its scale and 
proceeds westward rapidly as Rossby waves. 

Though slightly underestimating the westward translation velocity of the main 
eddy, the numerical simulation reproduced the characteristic trajectory of the main 
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Cyclonic 

Anticyclonic 

FIQURE 10. Trajectories of the eddy centre, where the tracing was made from the visualized flow 
of the tank experiment every 2 s :  0 ,  A, = 3.5cm; A, A, = 2.5cm; 0,  A, = -2.5cm; 0,  A, = 
-3.5 cm. The solid symbols correspond to cyclonic eddies and the open ones to anticyclonic 
eddies. 

eddy : (i) the northwestward (southwestward) translation direction of a cyclonic 
(anticyclonic) eddy, (ii) the positive dependence of the meridional translation 
velocity on nonlinearity, (iii) faster (slower) westward but slower (faster) northward 
(southward) translation of a cyclonic (anticyclonic) eddy, and (iv) a peculiar motion 
around t = 12 s to t = 20 s. Only in the simulation of a Gaussian eddy, does the 
cyclonic (anticyclonic) eddy tend to move northward (southward) in a monotonic 
manner ; this fact suggests the importance of large-scale (basin-wide) eddies for the 
meridional pulling back of the main eddy. 

4. Conclusions and discussion 
To study the autonomous behaviour of isolated eddies on a /3-plane, a laboratory 

and numerical experiment was carried out. In  the laboratory experiment, a 
source-sink method was used to generate an initial localized eddy. Thus, the system 
is free of density stratification in contrast to that of Takematsu & Kita (1985, 1988) 
and the initial eddy has net vorticity in contrast to the Gaussian eddy studied by 
Firing & Beardsley (1976). 

The numerical simulation was based on the quasi-geostrophic vorticity equation 
with some modifications. A few difficulties were unavoidable in approximating the 
present tank experiment by the quasi-geostrophic regime, especially with regard to 
the aspect ratio and the adjustment process. If an improved simulation is intended, 
we should rely on a primitive equation approach. Also, i t  was difficult to  control 
sufficiently well the generation of the initial eddy by the source-sink method. 

Nevertheless the quasi-geostrophic vorticity equation yields a good computational 
analogue of the laboratory experiment ; it was confirmed that the numerical 
experiment simulates the fluid experiment remarkably well, not only the flow 
pattern but also the trajectory of the main eddy. The qualitative behaviour of the 
eddy is insensitive to the initial conditions and the radius of deformation. In 
particular, the numerical computation based on the quasi-geostrophic vorticity 
equation shows that a cyclonic (anticyclonic) barotropic isolated eddy translates 
northwestward (southwestward), irrespective of whether it is a Gaussian eddy or a 
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Rankine-type eddy, i.e. irrespective of whether the isolated eddy has net vorticity or 
not. In  other words, the overall behaviour of the isolated eddy is not sensitive to the 
initial net vorticity of the eddy. 

Thus, we can conclude that a cyclonic eddy on a /%plane certainly translates 
northwestward in accordance with most of the previous findings (Firing & Beardsley 
1976). At the same time, the present results suggest that  the cyclonic eddies 
translating southwestward as observed in the laboratory experiments of Takematsu 
& Kita (1985, 1988) are governed by more subtle dynamics related with density 
stratification. 

Carrying out the experiment for both the cyclonic and anticyclonic case, we 
confirmed the north-south asymmetry due to nonlinear effects. When the planetary 
/3 is substituted by the topographic ,!I, however, another north-south asymmetry is 
introduced. Since the topographic ,!I is stronger in the northern area (note the 
opposite situation on the Earth), Rossby waves at higher latitudes propagate 
westward more rapidly than those a t  low latitudes. Consequently nonlinear effects 
are exaggerated in the southern area. These features were confirmed both in the tank 
experiment and in the numerical experiment. 

The translation of the eddy has often been discussed in relation to the eddy 
transport of various physical, chemical and biological quantities. As an example, let 
us attempt a simple argument on the meridional transport of (potential) vorticity by 
isolated eddies. The present results imply that the northward vorticity flux is 
positive irrespective of the sign of the isolated eddy; for the cyclonic (anticyclonic) 
eddy, the vorticity is positive (negative) and the translation is northward 
(southward). If the distribution of isolated eddies has a maximum at a latitude, its 
northern area receives positive vorticity input, while the southern area receives 
negative input. Then the maximum latitude will be accelerated eastward and both 
sides will accept the westward momentum. This consequence might have a close 
relation with eddy-driven circulation (both of the surface and of the bottom layer) 
or the recirculation of the Kuroshio or the Gulf Stream (Holland 1978; Holland & 
Rhines 1980). Of course, the present crude argument should be modified by vorticity 
transport due to eddies of non-isolated forms and other effects such as density 
stratification, nearby currents or eddies. 
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